ELECTRICAL ENGINEERING (PH.D.)

The Electrical Engineering Program offers Master of Science, Master of Engineering, and Ph.D. degrees. The Master of Science and Master of Engineering degrees may be earned through the Engineering Outreach off-campus program. These advanced degrees offer engineering students an opportunity to strengthen their knowledge of electrical engineering by taking graduate courses that focus on advanced subject matter and by participating in research.

Qualifications for Admittance

Candidates must have a bachelor's degree in electrical engineering with an undergraduate GPA of 3.00 or higher. International students who are required to take the TOEFL examination by the College of Graduate Studies must have a TOEFL score of at least 79 for the Internet-based Test (iBT) version, or 550 for the paper-based version. All candidates must submit scores from the general portion of the Graduate Record Examination.

Candidates who do not have a bachelor's degree in electrical engineering may be admitted to the graduate program if they meet the following minimum requirements in addition to the Electrical and Computer Engineering department and College of Graduate Studies admissions requirements:

- A bachelor's degree in computer engineering, computer science, or another engineering discipline or in science such as mathematics or physics.
- Demonstrated proficiency in the fundamentals of electrical engineering emphasized in the undergraduate curriculum. For each area of emphasis in electrical engineering, proficiency is demonstrated by successful completion of the following fundamental courses or their equivalents.

Code	Title	Hours	
Power Area ¹			
ECE 212	Electrical Circuits II	3	
ECE 320	Energy Systems I	3	
ECE 329	Background Study in Energy Systems	3	
ECE 350	Signals and Systems I	3	
ECE 359	Background Study in Signals and Systems Analysis	3	
ECE 420	Energy Systems II	3	
Electromagnetics Area ¹			
ECE 212	Electrical Circuits II	3	
ECE 330	Electromagnetic Theory	3	
ECE 350	Signals and Systems I	3	
ECE 359	Background Study in Signals and Systems Analysis	3	
ECE 432	Propagation of Wireless Signals	3	
ENGR 210	Engineering Statics	3	
MATH 170	Calculus I	4	
MATH 175	Calculus II	4	
MATH 275	Calculus III	3	
PHYS 212	Engineering Physics II	3	

PHYS 212L	Laboratory Physics II	1	
Microelectronics Area ¹			
ECE 212	Electrical Circuits II	3	
ECE 310	Microelectronics I	3	
ECE 319	Background Study in Electronics	3	
ECE 350	Signals and Systems I	3	
ECE 359	Background Study in Signals and Systems Analysis	3	
ECE 410	Microelectronics II	3	
Systems Area			
ECE 350	Signals and Systems I	3	
ECE 359	Background Study in Signals and Systems Analysis	3	
MATH 330	Linear Algebra	3	
STAT 301	Probability and Statistics	3	

Does not count for graduate credit.

Students may petition the graduate committee for exceptions to the required background list if their advisor or interim advisor approves.

Doctor of Philosophy. Major in Electrical Engineering.

General Ph.D. requirements apply. The preliminary examination consists of both a written and an oral examination. There is no foreign language requirement. Two semesters of ECE 591 will be required for on-campus doctoral students.

Please see the Electrical Engineering Graduate Student Handbook for details and program requirements on earning this degree.

- Expert engineering and science knowledge in specialty field of electrical engineering.
- The ability to advance the frontier of knowledge in designated research area of electrical engineering.
- The ability to read and understand archival professional journals and to organize research results and express them in a form suitable for professional publication.
- Understanding of the role of scientific and engineering research in a multicultural society, including the benefits and potential risks that actions based on this research may entail.
- The ability to formulate abstract goals and organize scientific and technical information to structure a cohesive research effort.
- The ability to communicate the results of research in written and other appropriate formats.