NUCLEAR ENGINEERING (NE)

NE 400 (s) Seminar
Credit arranged

NE 404 (s) Special Topics
Credit arranged

NE 437 Radiation Effects on Materials
3 credits
Cross-listed with MSE 437, Joint-listed with MSE 537 and NE 537
Interactions between radiation and solids.
Prereq: MSE 201 or Permission

NE 438 Fundamentals of Nuclear Materials
3 credits
Cross-listed with MSE 438, Joint-listed with MSE 538 and NE 538
This course is designed for students who wish to learn about nuclear materials and fuels from a materials science viewpoint. Topics to be covered include crystal structure, diffusion, radiation damage processes etc. Term projects and advanced problems required for graduate credit. (Spring only)
Prereq: MSE 201 or NE 450; or Permission

NE 450 Principles of Nuclear Engineering
3 credits
Basic nuclear and atomic processes; radioactive decay, binding energy, radiation interactions, reaction cross sections. Neutron diffusion, radiation sources. Idaho Falls only.
Prereq: MATH 310, ENGR 320, or Permission

NE 498 (s) Internship
Credit arranged

NE 499 (s) Directed Study
Credit arranged

NE 500 Master's Research and Thesis
Credit arranged
Course offered only in Idaho Falls.

NE 501 (s) Seminar
Credit arranged
Course offered only in Idaho Falls.

NE 502 (s) Directed Study
Credit arranged

NE 504 (s) Special Topics
Credit arranged

NE 505 (s) Professional Development
Credit arranged

NE 511 Nuclear Degradation Mechanisms
3 credits
Topics include various degradation mechanisms as applicable to nuclear structural components, including corrosion, creep, radiation damage etc.
Prereq: Graduate standing or Permission

NE 512 Nuclear Components Inspection
3 credits
Cross-listed with MSE 512.
This course will cover various non-destructive testing techniques to evaluate the environmental degradation of the nuclear structural components. Remnant life estimation of structural components exposed to fatigue, creep, and stress corrosion cracking service conditions will be discussed.
Prereq: Graduate standing or Permission

NE 513 Nuclear Security Science
3 credits
An engineering course on threat and risk informed nuclear security covering topics including: physical protection, facility characterization, consequence analysis, access control/delay, insider threats, security culture, transportation security, radiological crime scene, and nuclear forensics.
Prereq: Science or Engineering background or instructor permission

NE 514 Nuclear Safety
3 credits
Cross-listed with TM 514.
An in-depth technical study of safety issues within the nuclear fuel cycle and within various reactor types. Evaluation methods, system disturbances, safety criteria, containment, NRC licensing, and codes for safety analysis will be presented. Case studies of reactor accidents and corrective measures included.
Prereq: Permission.

NE 516 Nuclear Rules and Regulations
3 credits
Cross-listed with TM 516.
An in-depth examination of nuclear regulatory agencies; major nuclear legislation; current radiation protection standards and organizational responsibility for their implementation.
Prereq: Permission.

NE 520 Thermodynamics of Nuclear Power Plants
3 credits
Course covers applications of First Law to power nuclear plants: boiling water, pressurized, high temperature gas, small modular and advanced nuclear power plants. Nuclear power plant applications of pressurizers, suppression pools, nuclear containment, the application of the Second Law to exergy analysis of advanced fuel cycles.
Prereq: Permission

NE 524 Heat Exchanger Design
3 credits
This course will cover advanced heat exchanger design and apply that knowledge to the design of the following heat exchangers: tube-in-tube heat exchanger, air cooler, compact heat exchanger, feedwater heater, and condenser.
Prereq: Permission

NE 527 Nuclear Material Storage, Transportation, and Disposal
3 credits
There is a wide range of nuclear materials that are stored, transported and disposed of each day. The materials include medical radioisotopes, new fuel pellets, used fuel, and industrial radioisotopes. This course will cover the regulations that govern nuclear material storage, transportation and disposal, as well as the engineering requirements and practical aspects of handling these materials.

NE 528 Management of Nuclear Facilities
3 credits
Cross-listed with TM 538.
Nuclear facilities need a sustainable management system to make sure that matters of importance are not dealt with in isolation of other issues in the decision making process. Integrating all relevant issues, ranging from safety, security and safeguards to health and economic and environmental questions, leads to well-informed and balanced decisions. This course addresses from a practical point of view the safety and regulatory issues of operating and planned reactors in the U.S. and other countries.
NE 529 Risk Assessment
3 credits
Cross-listed with TM 529.
In-depth evaluation and analysis techniques used to determine the risk of industrial, process, nuclear, and aviation industries; fault tree analysis; human reliability analysis; failure mode and effect analysis.

NE 535 Nuclear Criticality Safety
3 credits
Cross-listed with TM 513.
Nuclear criticality safety including nuclear physics, fusion and neutron multiplication, moderation and reflection of neutrons, criticality issues in the fuel cycle, critical experiments and sub-critical limits, calculations of criticality, nuclear criticality safety practices, emergency procedures, and nuclear regulations and standards.
Prereq: NE 450 or Permission.

NE 536 Electrochemical Engineering
3 credits
Cross-listed with CHE 536
Application of chemical engineering principles to electrochemical systems; thermodynamics, kinetics, and mass transport in electrochemical systems; electrochemical process design.

NE 537 Radiation Effects on Materials
3 credits
Cross-listed with MSE 537, Joint-listed with MSE 437 and NE 437
Interactions between radiation and solids.
Prereq: MSE 201 or Permission

NE 538 Fundamentals of Nuclear Materials
3 credits
Cross-listed with MSE 538, Joint-listed with MSE 438 and NE 438
This course is designed for students who wish to learn about nuclear materials and fuels from a materials science viewpoint. Topics to be covered include crystal structure, diffusion, radiation damage processes, etc. Students who wish to receive credit for the 500 level course are required to do term-projects and advanced problems. (Spring only)
Prereq: MSE 201 or NE 450; or Permission

NE 548 Modeling of Thermal and Chemical Systems
3 credits
The course introduces students to methods, techniques, and process modeling software for modeling of thermal and chemical systems. The basic concepts and principles include power generation, refrigeration, cooling towers, air separation, hydrogen and ammonia production. Components such as compressors, turbines, pumps, heat exchangers, piping, fluid and gas mixtures, and chemical reactors are modeled. Economics and dynamic systems modeling are also covered.
Prereq: ME 322, ME 345, ME 420 or Permission

NE 551 Nuclear Reactor Fuels
3 credits
Selection of materials and design of nuclear fuels, light water reactor fuels, metal and oxide dispersed fuels, high temperature ceramic fuels.
Prereq: Permission

NE 554 Radiation Detection and Shielding
3 credits
Cross-listed with TM 535
Prereq: MATH 310 or Permission

NE 555 Nuclear Criticality Safety II
3 credits
Applications of criticality safety techniques to facility design and review, requirements for unique isotopes, criticality safety evaluations, connections to nuclear materials management, applications of Monte Carlo analysis. Idaho Falls only.
Prereq: NE 535 or Permission

NE 557 Advanced Nuclear Systems and Modeling
3 credits
Comprehensive information about nuclear systems (such as, nuclear steam supply systems, safety systems, etc.) and analytical modeling of nuclear systems. Description of reactor technologies (such as, Boiling Water Reactor –BWR- and Pressurized Water Reactor –PWR- systems and corresponding modeling and performance of the systems. Reactor thermal hydraulics models/tools are used to model the systems. Course projects are defined for practicing modeling techniques.
Prereq: NE 565

NE 575 Advanced Nuclear Power Engineering
3 credits
Present and advanced nuclear power plant descriptions and analysis. Engineering aspects of converting nuclear fission energy to useful work. Group project design. Idaho Falls only.
Prereq: Permission

NE 582 Spent Nuclear Fuel Management and Disposition
3 credits
Joint-listed with CHE 582.
The management of nuclear fuel after removal from a nuclear reactor; storage options, recycle and recovery of uranium and other radionuclides, geological repositories, and related topics.
Prereq: Permission

NE 587 Nuclear Decommissioning
3 credits
Concepts and strategies for decommissioning nuclear facilities including project and program management, waste management, and site environmental restorations.
Prereq: NE 450

NE 598 (s) Internship
Credit arranged

NE 599 (s) Research
Credit arranged

NE 600 Doctoral Research & Dissertation
Credit arranged