MECHANICAL ENGINEERING (ME)

ME 123 Introduction to Mechanical Design
3 credits
Introduction to engineering design process and analysis techniques including problem solving skills, development of software learning skills, graphical analysis, data analysis, and documentation skills. The course includes lecture and lab periods each week. (Fall only)
Coreq: MATH 143 and MATH 144

ME 201 (s) Engineering Team Projects
2-3 credits, max arranged
Joint-listed with ME 401.
Students will be introduced to a systems approach to designing, building and delivering an interdisciplinary engineering project, with an emphasis on learning how to realize a project in an organized team environment. Projects are chosen at the discretion of the department. Additional project duties/assignments required for 400-level credit.
Prereq for ME 401: ME Certification and Permission

ME 204 (s) Special Topics
Credit arranged

ME 223 Mechanical Design Analysis
3 credits
Use of design and problem solving methodology to model requirements, conduct project learning, develop concepts, and realize prototypes. Projects feature elements of electromechanical design, rapid prototyping, and experimentation.
Prereq: ME 123
Coreq: MATH 175

ME 299 (s) Directed Study
Credit arranged

ME 301 Computer Aided Design Methods
3 credits
Engineering drawing literacy, pre-CAD planning, part modeling, assembly modeling, drawing package formulation, culminating team project involving virtual dissection and reassembly of a complex machine.
Prereq: ME 223

ME 307 Group Mentoring I
1 credits
Mentoring of student groups in engineering classes where a process education environment is used; students taking this course will improve their engineering skill in the area they are mentoring as well as improving their team, communication, and leadership skills. Students must attend all classes or labs where group activities in the process education environment are done (a minimum of 2 mentoring sessions per week).
Prereq: Permission

ME 308 Group Mentoring II
1 credit
Mentoring of student groups in engineering classes where a process education environment is used; students taking this course will improve their engineering skill in the area they are mentoring as well as improving their team, communication, and leadership skills. Students must attend all classes or labs where group activities in the process education environment are done (a minimum of 2 mentoring sessions per week).
Prereq: Permission

ME 313 Dynamic Modeling of Engineering Systems
3 credits
Application of basic engineering principles to model and analyze the dynamic response of engineering systems; problem solutions will utilize transfer function methods, state variable techniques, and simulation software.
Prereq: ME 223, ENGR 220, ENGR 240, and MATH 310
Coreq: MATH 330

ME 322 Mechanical Engineering Thermodynamics
3 credits
Thermodynamic properties of substances, first and second laws of thermodynamics, thermodynamic analysis of mechanical engineering thermal components and cycles, psychrometric process, and introduction to combustion systems. (Fall only)
Prereq: CHEM 111/CHEM 111L and PHYS 211/PHYS 211L

ME 325 Machine Component Design I
3 credits
Study of stress, deflection and stiffness, material properties, static and fatigue failure theory in the context of the analysis and design of machine components such as fasteners, welds, spring design and bearings. Significant use of solid modeling and use of equation solvers.
Prereq: ME 341 and MSE 201

ME 330 Experimental Methods for Engineers
3 credits
Measurement systems and their application to engineering problems; topics include generalized performance of measurement systems, measuring and control devices, data acquisition and analysis, and report writing. Two lectures and one 2-hour lab per week.
Prereq: ENGR 240

ME 341 Intermediate Mechanics of Materials
3 credits
Mechanics of materials approach to: three-dimensional stress and strain, unsymmetrical bending, shear centers, curved beams, thick-walled pressure vessels, non-circular torsion; energy methods and advanced strength theories. Introduction to elementary kinematics. Significant use of solid modeling and use of equation solvers.
Prereq: ME 301 and Certification
Coreq: MSE 201

ME 345 Heat Transfer
3 credits
Transmission by conduction of heat in steady and unsteady states, by free and forced convection, and by radiation; combined effects of conduction, convection, and radiation.
Prereq: ME 322 and MATH 310
Coreq: ENGR 335

ME 398 (s) Engr Coop Internship I
Credit arranged
Supervised internship in professional engineering settings, integrating academic study with work experience; requires written report to be evaluated by a designated faculty member; details of coop to be arranged with ME Department before start of coop; cannot be counted as a technical elective. Graded P/F.
Prereq: Permission
ME 399 (s) Engr Coop Internship II
Credit arranged
Supervised internship in professional engineering settings, integrating academic study with work experience; requires written report to be evaluated by a designated faculty member; details of coop to be arranged with ME Department before start of coop; cannot be counted as a technical elective. Graded P/F.
Prereq: Permission

ME 401 (s) Engineering Team Projects
2-3 credits, max arranged
Joint-listed with ME 201.
Students will be introduced to a systems approach to designing, building and delivering an interdisciplinary engineering project, with an emphasis on learning how to realize a project in an organized team environment. Projects are chosen at the discretion of the department. Additional project duties/assignments required for 400-level credit.
Prereq for ME 401: ME Certification and Permission

ME 403 (s) Workshop
Credit arranged

ME 404 (s) Special Topics
Credit arranged

ME 407 Group Mentoring III
1 credit
Mentoring of student groups in engineering classes where a process education environment is used; students taking this course will improve their engineering skill in the area they are mentoring as well as improving their team, communication, and leadership skills. Student must attend all classes or labs where group activities in the process education environment are done (a minimum of 2 mentoring sessions per week).
Prereq: Permission

ME 410 Principles of Lean Manufacturing
3 credit
Principles of lean manufacturing are introduced that provide a systematic process for identifying and eliminating non-value activities (waste) in production processes. Students learn these principles through a series of workshops, lectures, and hands-on simulations of lean principles. Three hours of lecture and six hours of outside work per week.
Prereq: Senior standing in an engineering discipline or Permission

ME 414 HVAC Systems
3 credits
Joint-listed with ME 514.
Application of thermodynamics, heat transfer, and fluid flow to understanding the psychrometric performance of systems and equipment; evaluating the performance characteristics, advantages, and disadvantages of the various types of HVAC systems including large tonnage refrigeration/chiller equipment, cooling coils, cooling towers, ducts, fans, and heat pump systems; economics of system and equipment selection. Cooperative: open to WSU degree seeking students.
Prereq: ME 345

ME 415 Materials Selection and Design
3 credits
Selection of materials for use in structural applications; consideration of environment, stress conditions, cost, and performance as guide to properties; optimization of choice of materials and fabrication methods; open-ended problems of real applications in various industries. Recommended Preparation: MSE 313 and MSE 456. (Spring only)
Prereq: ME 201 and ENGR 350

ME 416 FE Exam Review
1 credit
Review of 10 essential topics on the Mechanical Engineering Fundamentals of Engineering exam, including preparation in each topic area based on online review sessions and solving sample problems. Graded P/F
Prereq: Senior Standing

ME 417 Turbomachinery
3 credits
Joint-listed with ME 517
Introduction to the basic principles of modern turbomachinery. Emphasis is placed on steam, gas (combustion), wind and hydraulic turbines. Applications of the principles of fluid mechanics, thermodynamics and aerodynamics to the design and analysis of turbines and compressors are incorporated. Additional technical research report and presentation required for graduate credit. ME 517 is cooperative: open to WSU degree seeking students. Recommended Preparation: ENGR 320, ENGR 335.

ME 420 Fluid Dynamics
3 credits
Joint-listed with ME 520.
Credit not granted for both ME 420 and ME 520. A second fluid dynamics course featuring vector calculus and integral and differential forms of the conservation laws. Topics include fluid properties, fluid statistics, inviscid flow; conservation of mass, momentum, and energy; and turbulence. Other topics may be covered. Additional projects/assignments required for graduate credit.
Prereq: ENGR 335, MATH 310, or Permission

ME 421 (s) Advanced Computer Aided Design
3 credits
Use of solid modeling software for advanced component design, creation of complex multi-component assemblies, animation studies, and rendering. Course concludes with one month-long final project.
Prereq: ME 301
Coreq: ME 341

ME 422 Applied Thermodynamics
3 credits
Advanced topics in applied thermodynamics including availability (exergy) analysis of systems, advanced power and refrigeration cycles, combustion, and thermodynamic properties of real fluids.
Prereq: ME 345
ME 423 Human Factors and Ergonomics in Product Design
3 credits
Joint-listed with ME 523
Introduction to and application of Human Factors & Ergonomics Engineering principles in product design. Engineers design systems (e.g., work environments or products) where the human is an integral component. Human Factors & Ergonomics Engineering puts emphasis on how products should be designed so that they are safe, comfortable, and efficient for the human user. This course will focus on how body characteristics, physical and cognitive abilities, and the environment affect how products should be designed to accommodate the intended user(s). Additional projects/assignments required for graduate credit.
Prereq: Senior standing in the College of Engineering; or Permission

ME 424 Mechanical Systems Design I
3 credits
Gen Ed: Senior Experience
Study of production realization including project planning, concept design, detail design, and manufacturing processes with multiple realistic constraints. Concepts learned are applied to a two-semester, capstone design project. The project is continued in ME 426. (Fall only)
Prereq: ME 301, ME 313, ME 325, ME 330, ME 345, and Certification

ME 425 Mechanical Systems Design II
3 credits
Gen Ed: Senior Experience
Continuation of each two-semester, capstone design project that was started in ME 424. (Spring only)
Prereq: ME 424

ME 430 Senior Lab
3 credits
Detailed lab investigation of engineering problem; statistical design of experiments; application of engineering principles to analyze experimental data; technical report writing; oral communication skills. One lecture and four hours of lab per week.
Prereq: ME 313 and ME 330

ME 433 Combustion Engine Systems
3 credits
Theory and characteristics of combustion engines; combustion process analysis; fuels, exhaust emissions and controls; system analysis and modeling.
Coreq: ME 345 or Permission

ME 435 Thermal Energy Systems Design
3 credits
Application of fluid mechanics, thermodynamics and heat transfer in the design of thermal energy systems; topics include thermal energy system component analysis and selection, component and system simulation, dynamic response of thermal systems, and system optimization.
Prereq: ME 345

ME 436 Sustainable Energy Sources and Systems
3 credits
An introduction to renewable energy conversion. Topics include: solar thermal, solar photovoltaic, and wind energy. Cooperative: open to WSU degree seeking students.
Prereq: ME 345

ME 438 Sustainability and Green Design
3 credits
Joint-listed with ME 538.
Prereq: MATH 310

ME 450 Fundamentals of Computational Fluid Dynamics
3 credits
Governing equations of fluid flow; fundamentals of turbulence modeling; accuracy and stability of discretization schemes; verification and validation; boundary and initial conditions; grid generation; CFD post-processing. Application of CFD software (ANSYS FLUENT) through five hands-on CFD Labs including internal viscous pipe flows, external flows over a 2D airfoil and a circular cylinder, and flows in a 2D driven cavity.
Prereq: ENGR 335 and MATH 330

ME 451 Experimental Methods in Fluid Dynamics
3 credits
The objective of this course is to develop the knowledge and skills to be able to design and perform fluid dynamics experiments (and experiments in related areas) and to interpret and report the results. Learn the words, the concepts, and experimental skills in areas including dimensional analysis and scaling of experiments, flow visualization, velocity and flow rate measurements, turbulence measurements, and sediment sizing and transport measurements. Additional projects/assignments required for graduate credit. One 1-1/2 hour lecture and one 3-hour lab per week.
Recommended Preparation: ENGL 317 and ENGR 335

ME 452 TechVentures: High Technology Entrepreneurship
3 credits
Joint-listed with ME 552.
TechVentures teaches students how to startup a technology company. Topics are (a) self-management, (b) product design, (c) marketing, (d) finance, and (e) organizational design. This project-based course is open to all majors. One extra project is required for graduate credit.
Prereq: Junior standing and Permission

ME 455 Sustainability and Green Design
3 credits
Joint-listed with ME 558.
The finite element method is an essential tool for the design and research activities performed in engineering companies and academic institutions. The goal of this course is to introduce students to the use of the finite element method by focusing on a range of engineering applications and employing an interactive commercial finite element code. Students will learn how to solve various problems from several mechanical engineering areas including solid mechanics, heat transfer and fluid mechanics. When available, analytical solutions will be compared with the finite element solutions for validation purposes. ME 558 is cooperative: open to WSU degree seeking students.
Prereq: ME 322 or ENGR 320 and ENGR 350
Coreq: ME 341 or Instructor Permission

ME 461 Fatigue and Fracture Mechanics
3 credits
Fracture mechanics approach to structural integrity, fracture control, transition temperature, microstructural and environmental effects, fatigue and failure analysis.
Prereq: MSE 201 and ENGR 350
ME 464 Robotics: Kinematics, Dynamics, and Control
3 credits
Joint-listed with ME 564
Mathematical analysis applied to spatial robotics including: Rigid body motion using screw theory, forward and inverse kinematics, analyses of forces and velocities using the manipulator Jacobian, serial and parallel chains, robot dynamics and simulation, nonlinear control and adaptive control, and Lyapunov stability theory. Additional projects/assignments required for graduate credit. Recommended Preparation: CS 120.
Prereq: MATH 310, MATH 330, and ME 313 or equivalent, ME 330

ME 472 Mechanical Vibrations
3 credits
Free and forced vibration of single and multiple degree of freedom systems; response of mechanical systems to inputs of varying complexity, ranging from single frequency to pseudo-random; applications to mechanical design and vibration control. Cooperative: open to WSU degree-seeking students.
Prereq: ENGR 220, MATH 310, and ME 313; or Graduate standing.

ME 481 Control Systems
3 credits
Cross-listed with ECE 470. Analysis and design of feedback control systems using frequency and time domain methods, and computer-aided design tools. Cooperative: open to WSU degree-seeking students.
Prereq: MATH 330
Prereq for Electrical Engineering and Computer Engineering majors: ECE 350
Prereq for Mechanical Engineering majors: ME 313

ME 490 Solid Modeling, Simulation and Manufacturing Capstone
3 credits
Use of solid modeling software focused on preparation for certification examinations, introduction to multi-physics numerical simulation, and computer-aided manufacturing (CAM). A major final project is required. (Fall only)
Prereq: Permission

ME 495 Mechanics in Design and Manufacturing
3 credits
An examination of the mechanics of deformation, shaping, and forming of materials, and the manufacturing processes utilizing them. Discussion of the four main material classes, their properties and their applications. Topics include elasticity, plasticity, and continuous material flow, microstructural concerns, advanced material failure mechanisms, materials testing, and design for manufacture.
Prereq: ME 341

ME 499 (s) Directed Study
Credit arranged
Selected topics. Detailed report required.
Prereq: Senior standing and Permission

ME 500 Master's Research and Thesis
Credit arranged

ME 501 (s) Seminar
Credit arranged

ME 502 (s) Directed Study
Credit arranged
Supervised study, including critical reading of current literature.
Prereq: Permission

ME 503 (s) Workshop
Credit arranged

ME 504 (s) Special Topics
Credit arranged

ME 505 (s) Professional Development
Credit arranged

ME 513 Engineering Acoustics
3 credits
Joint-listed with ME 413, Cross-listed with ECE 579. Fundamentals of acoustics including wave theory; transmission through layers, generation and reception; low frequency models; application to sound measurement, transducers, loudspeaker cabinet design, and nondestructive testing; acoustic design project required. Additional projects/assignments required for graduate credit. Cooperative: open to WSU degree-seeking students.
Prereq: ENGR 240 or ECE 212, and MATH 310, or ME 313

ME 514 HVAC Systems
3 credits
Joint-listed with ME 414. Application of thermodynamics, heat transfer, and fluid flow to understanding the psychrometric performance of systems and equipment; evaluating the performance characteristics, advantages, and disadvantages of the various types of HVAC systems including large tonnage refrigeration/chiller equipment, cooling coils, cooling towers, ducts, fans, and heat pump systems; economics of system and equipment selection. Cooperative: open to WSU degree-seeking students.
Prereq: ME 345

ME 517 Turbomachinery
3 credits
Joint-listed with ME 417 Introduction to the basic principles of modern turbomachinery. Emphasis is placed on steam, gas (combustion), wind and hydraulic turbines. Applications of the principles of fluid mechanics, thermodynamics and aerodynamics to the design and analysis of turbines and compressors are incorporated. Additional technical research report and presentation required for graduate credit. ME 517 is cooperative: open to WSU degree-seeking students. Recommended Preparation: ENGR 320, ENGR 335.

ME 520 Fluid Dynamics
3 credits
Joint-listed with ME 420. Cross-listed with CE 520. Credit not granted for both ME 420 and ME 520. A second fluid dynamics course featuring vector calculus and integral and differential forms of the conservation laws. Topics include fluid properties, fluid statistics, inviscid flow; conservation of mass, momentum, and energy; and turbulence. Other topics may be covered. Additional projects/assignments required for graduate credit.
Prereq: ENGR 335, MATH 310, or Permission

ME 523 Human Factors and Ergonomics in Product Design
3 credits
Joint-listed with ME 423 Introduction to and application of Human Factors & Ergonomics Engineering principles in product design. Engineers design systems (e.g., work environments or products) where the human is an integral component. Human Factors & Ergonomics Engineering puts emphasis on how products should be designed so that they are safe, comfortable, and efficient for the human user. This course will focus on how body characteristics, physical and cognitive abilities, and the environment affect how products should be designed to accommodate the intended user(s). Additional projects/assignments are required for graduate credit.
Prereq: Senior standing in the College of Engineering; or Permission
ME 525 Advanced Heat Transfer
3 credits
Study of major chemical and physical principles affecting properties of solid state engineering materials. Topics include bonding, carrier statistics, band-gap engineering, optical and transport properties, novel materials systems, characterization, magnetism, and comprehensive introduction to physics of solid state devices. Cooperative: open to WSU degree-seeking students.
Prereq: Permission

ME 527 Thermodynamics
3 credits
Thermodynamic laws for design and optimization of thermodynamic systems, equations of state, properties of ideal and real fluids and fluid mixtures, stability, phase equilibrium, chemical equilibrium, applications of thermodynamic principles. Cooperative: open to WSU degree-seeking students.
Prereq: ME 322 or ENGR 320 or Permission

ME 529 Combustion and Air Pollution
3 credits
Formation of pollutants during combustion processes and their subsequent transformations in the atmosphere; emphasis on the effects of design and operating parameters of combustion devices on the nature and composition of exhaust gases, improvements, post-combustion treatment of effluent gases, atmospheric chemistry, transport of pollutants, smog formation, acid rain, ozone formation and destruction.
Prereq: ENGR 320 and ENGR 335, ME 345 or Permission

ME 538 Sustainability and Green Design
3 credits
Prereq: MATH 310

ME 539 Advanced Mechanics of Materials
3 credits
Cross-listed with CE 510
Limitations of results of elementary mechanics of materials, complex situations of loading and structural geometry; applications to design of machines and structure, introduction to elasticity. Cooperative: open to WSU degree-seeking students.
Prereq: ME 341 or CE 342

ME 540 Continuum Mechanics
3 credits
Stress and deformation of continua using tensor analysis; relationship between stress, strain, and strain rates in fluids and solids; applications. Cooperative: open to WSU degree seeking students.
Prereq: Permission

ME 541 Mechanical Engineering Analysis
3 credits
Mathematical modeling and solutions to mechanical engineering problems; analytical solutions to linear heat and mass diffusion, waves and vibrations; introduction to approximate techniques. Cooperative: open to WSU degree-seeking students.
Prereq: MATH 330 and MATH 310 or Equivalent

ME 544 Conduction Heat Transfer
3 credits
Formulation of steady-state and transient one- and multi-dimensional heat conduction problems; analytical solution techniques for linear problems including separation of variables, integral transforms, and Laplace transforms.
Prereq: ME 345 or equivalent, or Permission

ME 546 Convective Heat Transfer
3 credits
Energy conservation equations; laminar and turbulent forced convective heat transfer; internal and external flow; free convection. Cooperative: open to WSU degree-seeking students.
Prereq: ME 345 or Permission

ME 547 Thermal Radiation Processes
3 credits
Thermal radiation; radiation interchange among surfaces; radiation in absorbing-emitting gases; combined modes of heat transfer.
Prereq: ME 345 or Permission

ME 548 Elasticity
3 credits
Mathematical analysis of strain and stress, including vectors, tensors, and coordinate transformations; equations of elasticity; stress problems involving extension, torsion, and flexure; theories of failure.
Prereq: ME 341 or CE 342

ME 549 Finite Element Analysis
3 credits
Cross-listed with CE 546. Formulation of theory from basic consideration of mechanics; applications to structural engineering, solid mechanics, soil and rock mechanics; fluid flow. Cooperative: open to WSU degree seeking students.
Prereq: ME 341 or CE 342

ME 550 Advanced Computation Fluid Dynamics
3 credits
Navier-Stokes and energy equations of fluid flow; advanced turbulence models; multiphase models; direct numerical simulations; advanced numerical methods; solution verification and validation; advanced CFD techniques; grid generation for complex geometries; CFD post-processing; fluid-structure interaction. Application of CFD software through hands-on CFD Labs including OpenFoam solutions to canonical flows studied in ME 450 and ANSYS Multiphysics or OpenFoam solutions to 2D free-surface flows, heat transfer of a 3D insulated box, sliding and dynamic meshes for two cars crossing each other, and fluid-structure interaction for a 2D balloon. Cooperative: open to WSU degree seeking students.
Prereq: ME 450.

ME 551 Experimental Methods in Fluid Dynamics
3 credits
Joint-listed ME 450, Cross-listed with CE 550. Governing equations of fluid flow; fundamentals of turbulence modeling; accuracy and stability of discretization schemes; verification and validation; boundary and initial conditions; grid generation; CFD post-processing. Application of CFD software (ANSYS FLUENT) through five hands-on CFD Labs including internal viscous pipe flows, external flows over a 2D airfoil and a circular cylinder, and flows in a 2D driven cavity. Additional projects/assignments required for graduate credit. Cooperative: open to WSU degree seeking students.
Prereq: ENGR 335 and MATH 330
ME 552 TechVentures: High Technology Entrepreneurship
3 credits
Joint-listed with ME 452.
TechVentures teaches students how to startup a technology company. Topics are (a) self-management, (b) product design, (c) marketing, (d) finance, and (e) organizational design. This project-based course is open to all majors. One extra project required for graduate credit.
Prereq: Junior Standing and Permission

ME 558 Finite Element Applications
3 credits
Joint-listed with ME 458.
The finite element method is an essential tool for the design and research activities performed in engineering companies and academic institutions.
The goal of this course is to introduce students to the use of the finite element method by focusing on a range of engineering applications and employing an interactive commercial finite element code. Students will learn how to solve various problems from several mechanical engineering areas including solid mechanics, heat transfer and fluid mechanics. When available, analytical solutions will be compared with the finite element solutions for validation purposes. Cooperative: open to WSU degree seeking students (ME 558 only).
Prereq: ME 322 (or ENGR 320) and ENGR 350
Coreq: ME 341 or instructor permission

ME 564 Robotics: Kinematics, Dynamics, and Control
3 credits
Joint-listed with ME 464
Mathematical analysis applied to spatial robotics including: Rigid body motion using screw theory, forward and inverse kinematics, analyses of forces and velocities using the manipulator Jacobian, serial and parallel chains, robot dynamics and simulation, nonlinear control and adaptive control, and Lyapunov stability theory. Additional projects/assignments required for graduate credit. Recommended Preparation: CS 120.
Prereq: MATH 310, MATH 330, and ME 313 or equivalent, ME 330

ME 571 Building Performance Simulation for Integrated Design
3 credits
Cross-listed with ARCH 574
This course focuses on design decisions that impact energy, thermal, visual and acoustic comfort with a strong emphasis on building simulation tools. This course provides students with the understanding of the nature of building thermal comfort, building envelope behavior, ventilation requirements, indoor air quality, passive cooling systems, energy conservation, and the importance of iterative building simulation in achieving high performance buildings.

ME 583 Reliability of Engineering Systems
3 credits
Cross-listed with CE 541.
Fundamentals of reliability theory, system reliability analysis including common-mode failures and fault tree and event tree analysis, time-dependent reliability including testing and maintenance, propagation of uncertainty, human reliability analysis, practical applications in component and system design throughout the semester. Cooperative: open to WSU degree-seeking students.
Prereq: Permission

ME 598 (s) Internship
Credits arranged

ME 599 (s) Non-thesis Master's Research
Credit arranged
Research not directly related to a thesis or dissertation.
Prereq: Permission

ME 600 Doctoral Research and Dissertation
Credit arranged