BE 422 Tissue Biomechanics (3 credits)
Joint-listed with BE 522
This course explores the structure and mechanical properties of hard and soft tissues. The main focus will be on musculoskeletal tissues and may include topics in bone, skin, cartilage, muscle, tendon and ligament. Structure-function relationships at a range of anatomical levels, from the cell to the whole tissue, will be examined. Journal articles will be used to discuss current research in tissue biomechanics. Additional projects/assignments are required for graduate credit. Recommended Preparation: Mechanics of Materials.
Prereqs: Junior or Senior standing; or Instructor Permission

BE 423 Tissue Engineering and Regenerative Medicine (3 credits)
Joint-listed with BE 523
This course explores the principles, strategies, and tools used in the field of tissue engineering and regenerative medicine. Topics may include the application of biomaterials, stem cells, and bioreactors for restoring, maintaining and improving tissue function. Journal articles will be used to discuss current research in tissue engineering and regenerative medicine. Additional projects/assignments are required for graduate credit.
Prereqs: Junior or Senior standing; or Instructor Permission

BE 426 Medical Imaging Techniques and Applications (3 credits)
Joint-listed with BE 526
This course studies the physical and mathematical principles of diagnostic medical imaging systems and may include: X-ray, CT, nuclear medicine (PET and SPECT), ultrasound, MRI, and others. Applications of imaging techniques will be discussed with respect to medical uses. Basic principles of image processing will be discussed and applied using computer programming software. Additional work is required for graduate credit. Math 310 recommended but not required.
Prereqs: MATH 275, PHYS 212, Junior or Senior standing; or Instructor Permission

BE 433 Bioremediation (3 credits)
Joint-listed with BE 533
Theory and practice of bioremediation as applied to toxic and hazardous wastes, including reaction kinetics, reaction stoichiometry, microbiology, and design of ex- and in-situ processes. Graduate credit requires additional design project. One or two field trips.
Prereqs: BIOL 115, BIOL 115L, and MATH 170, or Permission

BE 441 Instrumentation and Measurements (3 credits)
Joint-listed with BE 541
Sensing elements, signal conditioning, data output, and control. Additional projects/assignments required for graduate credit. Two lectures and one 3-hour lab per week. Cooperative: open to WSU degree-seeking students.
Prereqs: ENGR 240
Coreqs: STAT 301

BE 450 Environmental Hydrology (3 credits)
Carries no credit after BE 355 or CE 325. The objective of this course is to provide a comprehensive understanding of the hydrologic processes associated with the environmental processes. Includes components of the hydrologic cycle, analysis of precipitation and runoff, evapotranspiration, routing, peak flow, infiltration, soil and water relationships, snowmelt, and frequency analysis. (Spring only).
Prereqs: MATH 170
BE 453 Northwest Climate and Water Resources Change (3 credits)
Joint-listed with BE 553
Examines the relationship between climate and water resources in the
Northwest, including historical and potential changes, and comparisons
with other US regions. Scientific literature is read and discussed.
Quantitative tools are developed for modeling the process physics and
conducting statistical analyses. Historical data are analyzed. Additional
project components required for graduate credit.
Prereqs: STAT 301 or permission

BE 461 Bioprocess Engineering (3 credits)
Joint-listed with BE 561
This course covers advanced applications of biological sciences,
processing principles applied to the analysis and design of handling,
processing, and separation of bioproducts. Students complete several
hands-on laboratory modules in addition to a bioprocess design project.
Additional work required for graduate credit.
Prereqs: Permission

BE 462 Electric Power and Controls (3 credits)
Design, selection, and use of electrical equipment and electric power
systems for application to biological systems; design and use of
electrical, electronic, and other feedback control systems for use with
biological systems. Course includes advanced biological sciences
applications. Two lectures and one 3-hour lab per week.
Prereqs: ENGR 240
Coreqs: MATH 310

BE 478 Engineering Design I (3 credits)
General Education: Senior Experience
The capstone design sequence for biological and agricultural
engineering majors. Course topics include research, design, experimental
methods, specifications, prototyping, and verification; report writing,
documentation and oral presentations. Topics, from industrial
sponsorship, are considered in the context of a major design project
involving a team of students. Projects incorporate realistic engineering
constraints including environmental concerns, sustainability, ethical,
safety, manufacturability, social and political considerations.
Prereqs: BE 242, ENGR 320, ENGR 335, and ENGR 350

BE 479 Engineering Design II (3 credits)
General Education: Senior Experience
Continuation of the capstone design sequence for biological and
agricultural engineering majors. Course topics include research, design,
experimental methods, specifications, prototyping, and verification; report
writing, documentation and oral presentations. Topics, from industrial
sponsorship, are considered in the context of a major design project
involving a team of students. Projects incorporate realistic engineering
constraints including environmental concerns, sustainability, ethical,
safety, manufacturability, social and political considerations.
Prereqs: BE 478

BE 485 Fundamentals of Bioenergy and Bioproducts (3 credits)
Joint-listed with BE 585
Review of current technology for producing energy and products from
biological materials. Discussion of economic, social, and political aspects
and future prospects for petroleum displacement. Additional projects/
assignments required for graduate credit. Recommended Preparation: Organic Chemistry.
Prereqs: CHEM 111, CHEM 111L
Coreqs: ENGR 320 or Permission

BE 491 Senior Seminar (1 credit)
General Education: Senior Experience
Cross-listed with CHE 491
Professional aspects of the field, employment opportunities, and
preparation of occupational inventories. Graded P/F.
Prereqs: Senior standing

BE 492 Biofuels (3 credits)
Joint-listed with BE 592
Basic principles for the production and utilization of biobased fuels;
processing techniques and chemistry; fuel properties and utilization.
Additional projects/assignments required for graduate credit.
Recommended Preparation: Organic Chemistry.
Prereqs: CHEM 111, CHEM 111L
Coreqs: ENGR 320 or Permission

BE 494 Thermochemical Technologies for Biomass Conversion (3 credits)
Introduce the fundamentals of biomass conversion technologies for
biofuels and bioenergy. Specific topics include biomass preparation/
pretreatment, pyrolysis, gasification, direct liquefaction, and economic
factors in thermochemical conversion of biomass. Advances of the
technologies will be brought to current through literature reviews. A
semester long course project is required if taken as a graduate level
course. Recommended Preparation: Organic Chemistry, Chemical
Reaction Engineering, Engineering Thermodynamics.
Prereqs: CHEM 277 and CHEM 278
Coreqs: ENGR 320 or Permission

BE 499 (s) Directed Study (1-16 credits)
Credit arranged

BE 500 Master's Research and Thesis (1-16 credits)
Credit arranged

BE 501 (s) Seminar (1 credit, max 2)
Cross-listed with CHE 501
Graded P/F.
Prereqs: Permission

BE 502 (s) Directed Study (1-16 credits)
Credit arranged

BE 504 (s) Special Topics (1-16 credits)
Credit arranged

BE 511 Energy and Environmental Auditing (3 credits)
Joint-listed with BE 411
This course provides an understanding of energy usage, energy
management, and impact of industrial processes on environment. The
course covers instrumentation for measuring energy and emissions,
diagnostics for energy wastage, environmental life cycle analysis,
assessment tools, and writing recommendations. The graduate version
of the course includes a case study and in-depth analysis of uncommon
energy saving recommendations.
Prereqs: ENGR 240 and (ENGR 320 or ME 322), or Permission

BE 521 Image Processing and Computer Vision (3 credits)
Joint-listed with BE 421
Fundamentals of digital image processing, analysis, feature recognition,
and computer vision applied to areas of Biological Engineering including
agricultural, environmental and biomedical applications. This course
covers camera model, digital image processing and image analysis
techniques for computer vision. Additional project components required
for graduate credit.
Prereqs: (BE 242 and MATH 275) or permission
BE 522 Tissue Biomechanics (3 credits)
Joint-listed with BE 422
This course explores the structure and mechanical properties of hard and soft tissues. The main focus will be on musculoskeletal tissues and may include topics in bone, skin, cartilage, muscle, tendon and ligament. Structure-function relationships at a range of anatomical levels, from the cell to the whole tissue, will be examined. Journal articles will be used to discuss current research in tissue biomechanics. Additional projects/assignments required for graduate credit. Recommended Preparation: Mechanics of Materials

BE 523 Tissue Engineering and Regenerative Medicine (3 credits)
Joint-listed with BE 423
This course explores the principles, strategies, and tools used in the field of tissue engineering and regenerative medicine. Topics may include the application of biomaterials, stem cells, and bioreactors for restoring, maintaining and improving tissue function. Journal articles will be used to discuss current research in tissue engineering and regenerative medicine. Additional projects/assignments required for graduate credit.

BE 526 Medical Imaging Techniques and Applications (3 credits)
Joint-listed with BE 426
This course studies the physical and mathematical principles of diagnostic medical imaging systems and may include: X-ray, CT, nuclear medicine (PET and SPECT), ultrasound, MRI, and others. Applications of imaging techniques will be discussed with respect to medical uses. Basic principles of image processing will be discussed and applied using computer programming software. Additional work required for graduate credit. Math 310 recommended but not required.
Prereqs: MATH 275, PHYS 212, Junior or Senior standing, or Instructor Permission

BE 533 Bioremediation (3 credits)
Joint-listed with BE 433
Theory and practice of bioremediation as applied to toxic and hazardous wastes, including reaction kinetics, reaction stoichiometry, microbiology, and design of ex- and in-situ processes. Graduate credit requires additional design project. One or two field trips.
Prereqs: BIOL 115, BIOL 115L and MATH 170, or Permission

BE 541 Instrumentation and Measurements (3 credits)
Joint-listed with BE 441
sensing elements, signal conditioning, data output, and control. Additional projects/assignments required for graduate credit. Two lectures and one 3-hour lab per week. Cooperative: open to WSU degree-seeking students.
Prereqs: ENGR 240
Coreqs: STAT 301

BE 553 Northwest Climate and Water Resources Change (3 credits)
Joint-listed with BE 453
Examines the relationship between climate and water resources in the Northwest, including historical and potential changes, and comparisons with other US regions. Scientific literature is read and discussed. Quantitative tools are developed for modeling the process physics and conducting statistical analyses. Historical data are analyzed. Additional project components required for graduate credit.
Prereqs: STAT 301 or permission

BE 561 Bioprocess Engineering (3 credits)
Joint-listed with BE 461
This course covers advanced applications of biological sciences, processing principles applied to the analysis and design of handling, processing, and separation of biomaterials. Students complete several hands-on laboratory modules, in addition to a bioprocess design project. Additional work is required for graduate credit.
Prereqs: Permission

BE 585 Fundamentals of Bioenergy and Bioproducts (3 credits)
Joint-listed with BE 485
Prereqs: CHEM 111, CHEM 111L
Coreqs: ENGR 320 or Permission

BE 592 Biofuels (3 credits)
Joint-listed with BE 492
Basic principles for the production and utilization of biobased fuels; processing techniques and chemistry; fuel properties and utilization. Additional projects/assignments required for graduate credit. Recommended Preparation: Organic Chemistry.
Prereqs: CHEM 111, CHEM 111L
Coreqs: ENGR 320 or Permission

BE 598 (s) Internship (1-16 credits)
Credit arranged

BE 599 (s) Non-thesis Master’s Research (1-16 credits)
Credit arranged. Research not directly related to a thesis or dissertation.
Prereqs: Permission

BE 600 Doctoral Research and Dissertation (1-45 credits)
Credit arranged