All required coursework must be completed with a grade of B or better (O-10-b (https://catalog.uidaho.edu/general-requirements-academic-procedures/o-miscellaneous/)).

### Code	Title	Hours
INTR 509 | Introduction to Applied Data Science | 3
BCB 521 | Communicating with Data | 2
BCB 520 | Foundations of Data Visualization | 3
BCB 522 | Data Science Portfolio | 1
Electives (Choose one of the following) | | 3
AVS 531 | Practical Methods in Analyzing Animal Science Experiments | 1
BE 521 | Image Processing and Computer Vision | 1
BIOL 526 | Systems Biology | 1
BIOL 545 | Phylogenetics | 1
BE 541 | Instrumentation and Measurements | 1
BIOL 549 | Computer Skills for Biologists | 1
BIOL 563 | Mathematical Genetics | 1
CE 526 | Aquatic Habitat Modeling | 1
CS 511 | Parallel Programming | 1
CS 515 | Computational Biology: Sequence Analysis | 1
CS 547 | Digital Forensics | 1
CS 570 | Artificial Intelligence | 1
CS 574 | Deep Learning | 1
CS 575 | Machine Learning | 1
CS 577 | Python for Machine Learning | 1
ED 571 | Introduction to Quantitative Research | 1
CS 572 | Evolutionary Computation | 1
CS 578 | Neural Network Design | 1
CS 579 | Data Science | 1
CS 589 | Semantic Web and Open Data | 1
GEOG 507 | Spatial Analysis and Modeling | 1
GEOG 583 | Remote Sensing/GIS Image Analysis | 1
MATH 538 | Stochastic Models | 1
MIS 555 | Data Management for Big Data | 1
STAT 431 | Statistical Analysis | 1
STAT 514 | Nonparametric Statistics | 1
STAT 516 | Applied Regression Modeling | 1
STAT 517 | Statistical Learning and Predictive Modeling | 1
STAT 519 | Multivariate Analysis | 1
STAT 535 | Introduction to Bayesian Statistics | 1
STAT 555 | Statistical Ecology | 1
STAT 565 | Computer Intensive Statistics | 1
ED 584 | Univariate Quantitative Research in Education | 1
ED 587 | Multivariate Quantitative Analysis in Education | 1
Total Hours | **12**

1 Students should work with their advisors for potential substitution waivers.

Courses to total 12 credits for this certificate

Student Learning Outcomes

Upon completion of the certificate, students will be able to:

- Use open-source software to reproducibly manage, analyze, and visualize large, complex, and noisy data sets.
- Practice high quality and ethical data stewardship.
- Understand and execute data exploration.
- Effectively communicate data driven insights to experts and non-experts.
- Demonstrate their skills with an online portfolio of analyses and visualizations relevant to their field of specialization.