BIOINFORMATICS AND COMPUTATIONAL BIOLOGY GRADUATE ACADEMIC CERTIFICATE

There is a large and growing demand for graduates with training in bioinformatics and computational biology. These areas are vital to the biotechnology industry, the medical sciences, and conservation biology. This certificate will provide graduate students who are pursuing graduate degrees in other areas with recognition for taking multiple courses of the BCB curriculum, and thus building a strong foundation in bioinformatics and computational biology. For more information, please email bcb@uidaho.edu or visit the BCB Program office in Life Sciences South (Room 441D).

All required coursework must be completed with a grade of B or better (O-10-b (https://catalog.uidaho.edu/general-requirementsacademic-procedures/o-miscellaneous/)).

Code	Title	Hours
BIOL 5220	Molecular Evolution	3
CS 5615	Computational Biology: Sequence Analysis	3
MATH 5630	Mathematical Genetics	3
Select 3 credits from the following: ¹		3
BIOL 4210	Advanced Evolution	
BIOL 4440	Genomics	
BIOL 4560	Computer Skills for Biologists	
BIOL 5450	Phylogenetics	
BIOL 5470	Virology	
BIOL 5850	Prokaryotic Molecular Biology	
BIOL 5870	Cellular and Molecular Basis of Disease	
CS 5211	Parallel Programming	
CS 5701	Artificial Intelligence	
CS 5731	Evolutionary Computation	
CS 5712	Machine Learning	
MATH 4280	Numerical Methods	
MATH 4510	Probability Theory	
MATH 4520	Mathematical Statistics	
MATH 5380	Stochastic Models	
PLSC 5420	Biochemistry	
PLSC 5880	Genetic Engineering	
PHYS 5330	Statistical Mechanics	
STAT 5190	Multivariate Analysis	
STAT 5650	Computer Intensive Statistics	
Total Hours		12

Total Hours

Courses to total 12 credits for this certificate

Three credits in a different area than the student's disciplinary focus. This course must be approved by the BCB director or another member of the BCB governing board.

- 1. The student will demonstrate an augmented understanding in bioinformatics, mathematics, and computational sciences.
- 2. The student will have the capability to participate in interdisciplinary research and industry projects and be able to explain Bioinformatics and Computational Biology (BCB) concepts (from the biological, mathematical, and computational sciences) to people with widely varying backgrounds, from professionals in other fields to lay people.

1

3. The student will use and understand a common 'language' that allows those with a background in one of the BCB disciplines to communicate and collaborate in interdisciplinary projects with colleagues from other disciplines.