MECHANICAL ENGINEERING (B.S.M.E.)

This program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Note: Pre-advising is required to register in any ME course.

Required course work includes the university requirements (see regulation J-3 (https://catalog.uidaho.edu/general-requirements-academic-procedures/j-general-requirements-baccalaureate-degrees)), completion of the Fundamentals of Engineering (FE) examination and:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 111</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 111L</td>
<td>General Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COMM 101</td>
<td>Fundamentals of Oral Communication</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 317</td>
<td>Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 210</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 220</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 240</td>
<td>Introduction to Electrical Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 335</td>
<td>Engineering Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 350</td>
<td>Engineering Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 201</td>
<td>Elements of Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 170</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 175</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 275</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 310</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 330</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>ME 123</td>
<td>Introduction to Mechanical Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 223</td>
<td>Mechanical Design Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 301</td>
<td>Computer Aided Design Methods</td>
<td>3</td>
</tr>
<tr>
<td>ME 313</td>
<td>Dynamic Modeling of Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 322</td>
<td>Mechanical Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 325</td>
<td>Machine Component Design I</td>
<td>3</td>
</tr>
<tr>
<td>ME 330</td>
<td>Experimental Methods for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ME 341</td>
<td>Intermediate Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 345</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ME 416</td>
<td>FE Exam Review</td>
<td>1</td>
</tr>
<tr>
<td>ME 424</td>
<td>Mechanical Systems Design I</td>
<td>3</td>
</tr>
<tr>
<td>ME 426</td>
<td>Mechanical Systems Design II</td>
<td>3</td>
</tr>
<tr>
<td>ME 430</td>
<td>Senior Lab</td>
<td>3</td>
</tr>
<tr>
<td>ME 435</td>
<td>Thermal Energy Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 103</td>
<td>Introduction to Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>Engineering Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211L</td>
<td>Laboratory Physics I</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>Engineering Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 212L</td>
<td>Laboratory Physics II</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one from the following: 3-4

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 201</td>
<td>Principles of Macroeconomics</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Microeconomics</td>
</tr>
<tr>
<td>ECON 272</td>
<td>Foundations of Economic Analysis</td>
</tr>
</tbody>
</table>

Technical Elective requirements for Mechanical Engineering

Select 15 credits from the following: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE 421</td>
<td>Image Processing and Computer Vision</td>
</tr>
<tr>
<td>BE 425</td>
<td>Introduction to Biomedical Engineering</td>
</tr>
<tr>
<td>BE 462</td>
<td>Electric Power and Controls</td>
</tr>
<tr>
<td>ENGR 360</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>ENGR 428</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>ENTR 414</td>
<td>Entrepreneurship</td>
</tr>
<tr>
<td>ENTR 415</td>
<td>New Venture Creation</td>
</tr>
<tr>
<td>MATH 371</td>
<td>Mathematical Physics</td>
</tr>
<tr>
<td>MATH 420</td>
<td>Complex Variables</td>
</tr>
<tr>
<td>MATH 428</td>
<td>Numerical Methods</td>
</tr>
<tr>
<td>MATH 432</td>
<td>Numerical Linear Algebra</td>
</tr>
<tr>
<td>MATH 437</td>
<td>Mathematical Biology</td>
</tr>
<tr>
<td>MATH 451</td>
<td>Probability Theory</td>
</tr>
<tr>
<td>MATH 452</td>
<td>Mathematical Statistics</td>
</tr>
<tr>
<td>MATH 453</td>
<td>Stochastic Models</td>
</tr>
<tr>
<td>MATH 471</td>
<td>Introduction to Analysis I</td>
</tr>
<tr>
<td>MATH 472</td>
<td>Introduction to Analysis II</td>
</tr>
<tr>
<td>MATH 480</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td>ME 401</td>
<td>Engineering Team Projects</td>
</tr>
<tr>
<td>ME 404</td>
<td>Special Topics</td>
</tr>
<tr>
<td>ME 410</td>
<td>Principles of Lean Manufacturing</td>
</tr>
<tr>
<td>ME 412</td>
<td>Gas Dynamics</td>
</tr>
<tr>
<td>ME 413</td>
<td>Engineering Acoustics</td>
</tr>
<tr>
<td>ME 414</td>
<td>HVAC Systems</td>
</tr>
<tr>
<td>ME 417</td>
<td>Turbomachinery</td>
</tr>
<tr>
<td>ME 420</td>
<td>Fluid Dynamics</td>
</tr>
<tr>
<td>ME 421</td>
<td>Advanced Computer Aided Design</td>
</tr>
<tr>
<td>ME 422</td>
<td>Applied Thermodynamics</td>
</tr>
<tr>
<td>ME 423</td>
<td>Human Factors and Ergonomics in Product Design</td>
</tr>
<tr>
<td>ME 433</td>
<td>Combustion Engine Systems</td>
</tr>
<tr>
<td>ME 436</td>
<td>Sustainable Energy Sources and Systems</td>
</tr>
<tr>
<td>ME 438</td>
<td>Sustainability and Green Design</td>
</tr>
<tr>
<td>ME 450</td>
<td>Fundamentals of Computational Fluid Dynamics</td>
</tr>
<tr>
<td>ME 451</td>
<td>Experimental Methods in Fluid Dynamics</td>
</tr>
<tr>
<td>ME 452</td>
<td>TechVentures: High Technology Entrepreneur</td>
</tr>
<tr>
<td>ME 458</td>
<td>Finite Element Applications in Engineering</td>
</tr>
<tr>
<td>ME 461</td>
<td>Fatigue and Fracture Mechanics</td>
</tr>
<tr>
<td>ME 464</td>
<td>Robotics: Kinematics, Dynamics, and Control</td>
</tr>
<tr>
<td>ME 472</td>
<td>Mechanical Vibrations</td>
</tr>
<tr>
<td>ME 481</td>
<td>Control Systems</td>
</tr>
<tr>
<td>ME 490</td>
<td>Solid Modeling, Simulation and Manufacturing Capstone</td>
</tr>
<tr>
<td>ME 519</td>
<td>Fluid Transients</td>
</tr>
<tr>
<td>ME 521</td>
<td>Design Synthesis with Solid Modeling</td>
</tr>
<tr>
<td>ME 525</td>
<td>Advanced Heat Transfer</td>
</tr>
<tr>
<td>ME 529</td>
<td>Combustion and Air Pollution</td>
</tr>
<tr>
<td>ME 539</td>
<td>Advanced Mechanics of Materials</td>
</tr>
<tr>
<td>ME 540</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>ME 541</td>
<td>Mechanical Engineering Analysis</td>
</tr>
<tr>
<td>ME 544</td>
<td>Conduction Heat Transfer</td>
</tr>
<tr>
<td>ME 547</td>
<td>Thermal Radiation Processes</td>
</tr>
</tbody>
</table>
ME 548 Elasticity
ME 549 Finite Element Analysis
ME 550 Advanced Computation Fluid Dynamics
ME 571 Building Performance Simulation for Integrated Design
ME 580 Linear System Theory
MSE 412 Mechanical Behavior of Materials
MSE 415 Materials Selection and Design
MSE 417 Instrumental Analysis
MSE 423 Corrosion
MSE 438 Fundamentals of Nuclear Materials
NE 437 Radiation Effects on Materials
NE 438 Fundamentals of Nuclear Materials
NE 450 Principles of Nuclear Engineering
OM 378 Project Management
OM 439 Systems and Simulation
OM 456 Quality Management
PHYS 305 Modern Physics
PHYS 351 Introductory Quantum Mechanics I
PHYS 411 Advanced Physics Lab
PHYS 428 Numerical Methods
PHYS 443 Optics
PHYS 464 Materials Physics and Engineering
PHYS 465 Nuclear and Particle Physics
PHYS 484 Astrophysics
STAT 301 Probability and Statistics
STAT 431 Statistical Analysis
Any Approved 400/500 Level Course in another Engineering Discipline

A maximum of 6 credits of the following may be selected:
ME 307 Group Mentoring I
ME 308 Group Mentoring II
ME 401 Engineering Team Projects
ME 407 Group Mentoring III

Total Hours 113-114

1 Fifteen credits of technical electives are required from the list. The breakdown of credits will be as follows: six credits must be an ME upper division course, three credits must be an upper division Math, Statistics or Physics course, the remaining six credits may be any course listed.

Courses to total 128 credits for this degree, not counting ENGL 101, MATH 143, and other courses that might be required to remove deficiencies.

To advance to upper-division courses, a student majoring in mechanical engineering must earn certification: the student may accumulate no more than three grades of D or F in the mathematics, science or engineering courses used to satisfy certification requirements. Included in this number are courses transferred from other institutions, multiple repeats of a single course, and single repeats in multiple courses.

In addition, students must also earn at least five grades of 'B' or better in these mathematics, science or engineering courses: