FOOD SCIENCE (M.S.)

Master of Science. Major in Food Science.

Thesis and non-thesis options are offered.

1. **Thesis option**: University M.S. degree requirements apply along with specific department requirements for the M.S. in food science as described on the department webpage (www.sfs.wsu.edu/graduate-program/ui-graduate-students) (http://www.sfs.wsu.edu/graduate-program/ui-graduate-students/). The degree will prepare students for a variety of careers in the food and related industries, as well as for further academic studies. Each student will design a study plan in consultation with an advisor and thesis committee and present a thesis proposal to their committee. The degree program emphasizes research and a thesis is required for graduation. An oral examination covering graduate course work and thesis research is required during the student's final semester.

2. **Non-thesis option**: The non-thesis degree is designed to provide students with a broad perspective in food science. The student should have career goals that do not include a research emphasis. University M.S. degree requirement apply plus additional requirements described on the department webpage (www.sfs.wsu.edu/graduate-program/ui-graduate-students) (http://www.sfs.wsu.edu/graduate-program/ui-graduate-students/). The non-thesis option requires a minimum of 33 credits, the appointment of a graduate committee and a final oral examination. Along with specific course requirements, the student is required to complete a substantial project, paper or presentation to demonstrate ability for independent work and critical thinking. Students are not eligible for the non-thesis option if they have been supported on a graduate assistantship.

1. Exhibit oral and written communications skills needed to accurately and efficiently convey technical information and defend scientific findings in both scientific and lay settings.

2. Demonstrate a comprehensive and fundamental understanding of food science knowledge and principles.

3. Exhibit oral and written communications skills needed to accurately and efficiently convey technical information and defend scientific findings in both scientific and lay settings.

4. Appropriately design and conduct research experiments, and objectively analyze, interpret, organize, and evaluate research findings.